data.frame
containing the inferred ancestry on the synthetic profiles.R/RAIDS.R
matKNNSynthetic.Rd
The object is a data.frame
with 4 columns.
data(matKNNSynthetic)
The data.frame
containing the information about the
synthetic profiles. The data.frame
contains 4 columns:
sample.id
a character
string representing the unique
synthetic profile identifier.
D
a numeric
representing the number of dimensions used
to infer the ancestry of the synthetic profile.
K
a numeric
representing the number of neighbors used
to infer the ancestry of the synthetic profile.
SuperPop
a character
string representing the
inferred ancestry of the synthetic profile for the specific D and K values.
The data.frame
containing the information about the
synthetic profiles. The data.frame
contains 4 columns:
sample.id
a character
string representing the unique
synthetic profile identifier.
D
a numeric
representing the number of dimensions used
to infer the ancestry of the synthetic profile.
K
a numeric
representing the number of neighbors used
to infer the ancestry of the synthetic profile.
SuperPop
a character
string representing the
inferred ancestry of the synthetic profile for the specific D and K values.
This dataset can be
used to test the computeSyntheticROC
function.
computeSyntheticROC
for calculating the AUROC of the inferences for specific values of D and K using the inferred ancestry results from the synthetic profiles
## Loading demo dataset containing pedigree information for synthetic
## profiles
data(pedSynthetic)
## Loading demo dataset containing the inferred ancestry results
## for the synthetic data
data(matKNNSynthetic)
## Retain one K and one D value
matKNN <- matKNNSynthetic[matKNNSynthetic$D == 5 & matKNNSynthetic$K == 4, ]
## Compile statistics from the
## synthetic profiles for fixed values of D and K
results <- RAIDS:::computeSyntheticROC(matKNN=matKNN,
matKNNAncestryColumn="SuperPop",
pedCall=pedSynthetic, pedCallAncestryColumn="superPop",
listCall=c("EAS", "EUR", "AFR", "AMR", "SAS"))
results$matAUROC.All
#> pcaD K ROC.AUC ROC.CI N NBNA
#> 1 5 4 0.6227679 0 52 0
results$matAUROC.Call
#> pcaD K Call L AUC H
#> 1 5 4 EAS 0.4807257 0.6547619 0.8287981
#> 2 5 4 EUR 0.4064737 0.5666667 0.7268596
#> 3 5 4 AFR 0.8168697 0.9154135 1.0000000
#> 4 5 4 AMR 0.3743226 0.5056818 0.6370411
#> 5 5 4 SAS 0.3609393 0.5047619 0.6485845
results$listROC.Call
#> $EAS
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 42 controls (fCur 0) < 10 cases (fCur 1).
#> Area under the curve: 0.6548
#> 95% CI: 0.4807-0.8288 (DeLong)
#>
#> $EUR
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 42 controls (fCur 0) < 10 cases (fCur 1).
#> Area under the curve: 0.5667
#> 95% CI: 0.4065-0.7269 (DeLong)
#>
#> $AFR
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 38 controls (fCur 0) < 14 cases (fCur 1).
#> Area under the curve: 0.9154
#> 95% CI: 0.8169-1 (DeLong)
#>
#> $AMR
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 44 controls (fCur 0) < 8 cases (fCur 1).
#> Area under the curve: 0.5057
#> 95% CI: 0.3743-0.637 (DeLong)
#>
#> $SAS
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 42 controls (fCur 0) < 10 cases (fCur 1).
#> Area under the curve: 0.5048
#> 95% CI: 0.3609-0.6486 (DeLong)
#>