A table of genomic positions for DNA copy-number changing events, collected from genomes of 1203 individuals using Representational Oligonucleotide Microarray Analysis (ROMA) platform.

data(cnpexample)

Format

a data.frame with 19188 rows and 4 columns:

copy.num

a character vector indicating whether an event is a gain ("amp") or a loss ("del").

chrom

a numeric vector used as an integer indicating which chromosome the event is in.

chrom.start

a numeric vector, used as an integer, representing the event start positions.

chrom.end

a numeric vector, used as an integer, of event start positions.

Source

Strong association of de novo copy number mutations with autism. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Science. 2007 Apr 20;316(5823):445-9.

Value

a data.frame with 19188 rows and 4 columns:

copy.num

a character vector indicating whether an event is a gain ("amp") or a loss ("del").

chrom

a numeric vector used as an integer indicating which chromosome the event is in.

chrom.start

a numeric vector, used as an integer, representing the event start positions.

chrom.end

a numeric vector, used as an integer, of event start positions.

See also

  • CNpreprocessing for pre-processing DNA copy number (CN) data for detection of CN events.

  • makeCNPmask for creating a mask given a set of copy number events.

  • applyCNPmask for applying a mask to a table of copy number events.

Examples

## Load datasets data(segexample) data(ratexample) data(normsegs) data(cnpexample) ## Create a table with segment information for profile WZ2 with help ## of normal samples segtable <- CNpreprocessing(segall = segexample[segexample[,"ID"] == "WZ2",], ratall = ratexample, idCol = "ID", startCol = "start", endCol = "end", chromCol = "chrom", bpStartCol = "chrom.pos.start", bpEndCol = "chrom.pos.end", blsize = 50, minJoin = 0.25, cWeight = 0.4, bsTimes = 50, chromRange = 1:22, nJobs = 1, modelNames = "E", normalLength = normsegs[,1], normalMedian = normsegs[,2]) ## Add an eventIndex column to segtable that identifies the ## amplication (marked as 1) and deletion (marked as -1) events eventIndex <- rep(0, nrow(segtable)) eventIndex[segtable[,"marginalprob"] < 1e-4 & segtable[,"negtail"] > 0.999 & segtable[,"mediandev"] < 0] <- -1 eventIndex[segtable[,"marginalprob"] < 1e-4 & segtable[,"negtail"] > 0.999 & segtable[,"mediandev"] > 0] <- 1 segtable <- cbind(segtable, eventIndex) ## Create a mask table using amplification and deletion regions as input namps17 <- cnpexample[cnpexample[,"copy.num"] == "amp",] aCNPmask <- makeCNPmask(imat=namps17, chromCol=2, startCol=3, endCol=4, nProf=1203, uThresh=0.02, dThresh=0.008) ndels17 <- cnpexample[cnpexample[,"copy.num"] == "del",] dCNPmask <- makeCNPmask(imat=ndels17, chromCol=2, startCol=3, endCol=4, nProf=1203, uThresh=0.02, dThresh=0.008) maskTable <- rbind(cbind(aCNPmask, cnpindex=1), cbind(dCNPmask, cnpindex=-1)) ## Apply a mask to a table of copy number events maskedCNP <- applyCNPmask(segTable=segtable, chrom="chrom", startPos="chrom.pos.start", endPos="chrom.pos.end", startProbe="start", endProbe="end", eventIndex="eventIndex", maskTable=maskTable, maskChrom="chrom", maskStart="start", maskEnd="end", maskIndex="cnpindex", minCover=0.005, indexVals=c(-1, 1)) ## Show some results tail(maskedCNP)
#> StartProbe EndProbe toremove #> [165,] 80389 81843 0 #> [166,] 81844 81854 0 #> [167,] 81855 81877 0 #> [168,] 81878 82039 0 #> [169,] 82040 82055 0 #> [170,] 82056 83055 0